3,991 research outputs found

    Vacuum stability in stau-neutralino coannihilation in MSSM

    Full text link
    The stau-neutralino coannihilation provides a feasible way to accommodate the observed cosmological dark matter (DM) relic density in the minimal supersymmetric standard model (MSSM). In such a coannihilation mechanism the stau mass usually has an upper bound since its annihilation rate becomes small with the increase of DM mass. Inspired by this observation, we examine the upper limit of stau mass in the parameter space with a large mixing of staus. We find that the stau pair may dominantly annihilate into dibosons and hence the upper bound on the stau mass (400\sim400 GeV) obtained from the ffˉf\bar{f} final states can be relaxed. Imposing the DM relic density constraint and requiring a long lifetime of the present vacuum, we find that the lighter stau mass can be as heavy as about 1.4 TeV for the stau maximum mixing. However, if requiring the present vacuum to survive during the thermal history of the universe, this mass limit will reduce to about 0.9 TeV. We also discuss the complementarity of vacuum stability and direct detections in probing this stau coannihilation scenario.Comment: 12 pages, 6 figure

    Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms

    Get PDF
    We investigate, both theoretically and experimentally, the phenomenon of polarization rotation of a weak, linearly-polarized optical (probe) field in an atomic system with multiple three-level electromagnetically induced transparency (EIT) sub-systems. The polarization rotation angle can be controlled by a circularly-polarized coupling beam, which breaks the symmetry in number of EIT subsystems seen by the left- and right-circularly-polarized components of the weak probe beam. A large polarization rotation angle (up to 45 degrees) has been achieved with a coupling beam power of only 15 mW. Detailed theoretical analyses including different transition probabilities in different transitions and Doppler-broadening are presented and the results are in good agreements with the experimentally measured results.Comment: 28pages, 12figure

    The Wall Street Neophyte: A Zero-Shot Analysis of ChatGPT Over MultiModal Stock Movement Prediction Challenges

    Full text link
    Recently, large language models (LLMs) like ChatGPT have demonstrated remarkable performance across a variety of natural language processing tasks. However, their effectiveness in the financial domain, specifically in predicting stock market movements, remains to be explored. In this paper, we conduct an extensive zero-shot analysis of ChatGPT's capabilities in multimodal stock movement prediction, on three tweets and historical stock price datasets. Our findings indicate that ChatGPT is a "Wall Street Neophyte" with limited success in predicting stock movements, as it underperforms not only state-of-the-art methods but also traditional methods like linear regression using price features. Despite the potential of Chain-of-Thought prompting strategies and the inclusion of tweets, ChatGPT's performance remains subpar. Furthermore, we observe limitations in its explainability and stability, suggesting the need for more specialized training or fine-tuning. This research provides insights into ChatGPT's capabilities and serves as a foundation for future work aimed at improving financial market analysis and prediction by leveraging social media sentiment and historical stock data.Comment: 13 page

    Select and Trade: Towards Unified Pair Trading with Hierarchical Reinforcement Learning

    Full text link
    Pair trading is one of the most effective statistical arbitrage strategies which seeks a neutral profit by hedging a pair of selected assets. Existing methods generally decompose the task into two separate steps: pair selection and trading. However, the decoupling of two closely related subtasks can block information propagation and lead to limited overall performance. For pair selection, ignoring the trading performance results in the wrong assets being selected with irrelevant price movements, while the agent trained for trading can overfit to the selected assets without any historical information of other assets. To address it, in this paper, we propose a paradigm for automatic pair trading as a unified task rather than a two-step pipeline. We design a hierarchical reinforcement learning framework to jointly learn and optimize two subtasks. A high-level policy would select two assets from all possible combinations and a low-level policy would then perform a series of trading actions. Experimental results on real-world stock data demonstrate the effectiveness of our method on pair trading compared with both existing pair selection and trading methods.Comment: 10 pages, 6 figure

    Relationship between obesity and structural brain abnormality: Accumulated evidence from observational studies

    Get PDF
    Body mass index; Structural brain abnormalitiesÍndex de massa corporal; Anormalitats estructurals del cervellÍndice de masa corporal; Anomalías estructurales del cerebroWe aimed to evaluate the relationship between obesity and structural brain abnormalities assessed by magnetic resonance imaging using data from 45 observational epidemiological studies, where five articles reported prospective longitudinal results. In cross-sectional studies’ analyses, the pooled weighted mean difference for total brain volume (TBV) and gray matter volume (GMV) in obese/overweight participants was -11.59 (95 % CI: -23.17 to -0.02) and -10.98 (95 % CI: -20.78 to -1.18), respectively. TBV was adversely associated with BMI and WC, GMV with BMI, and hippocampal volume with BMI, WC, and WHR. WC/WHR are associated with a risk of lacunar and white matter hyperintensity (WMH). In longitudinal studies’ analyses, BMI was not statistically associated with the overall structural brain abnormalities (for continuous BMI: RR = 1.02, 95 % CI: 0.94–1.12; for categorial BMI: RR = 1.18, 95 % CI: 0.75–1.85). Small sample size of prospective longitudinal studies limited the power of its pooled estimates. A higher BMI is associated with lower brain volume while greater WC/WHR, but not BMI, is related to a risk of lacunar infarct and WMH. Future longitudinal research is needed to further elucidate the specific causal relationships and explore preventive measures.This work was supported by the National Natural Science Foundation of China (No. 82070851, 81870556, 81930019, 81770686, 81970591), Beijing Municipal Administration of Hospital’s Youth Program (QML20170204), Excellent Talents in Dongcheng District of Beijing

    PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark for Finance

    Full text link
    Although large language models (LLMs) has shown great performance on natural language processing (NLP) in the financial domain, there are no publicly available financial tailtored LLMs, instruction tuning datasets, and evaluation benchmarks, which is critical for continually pushing forward the open-source development of financial artificial intelligence (AI). This paper introduces PIXIU, a comprehensive framework including the first financial LLM based on fine-tuning LLaMA with instruction data, the first instruction data with 136K data samples to support the fine-tuning, and an evaluation benchmark with 5 tasks and 9 datasets. We first construct the large-scale multi-task instruction data considering a variety of financial tasks, financial document types, and financial data modalities. We then propose a financial LLM called FinMA by fine-tuning LLaMA with the constructed dataset to be able to follow instructions for various financial tasks. To support the evaluation of financial LLMs, we propose a standardized benchmark that covers a set of critical financial tasks, including five financial NLP tasks and one financial prediction task. With this benchmark, we conduct a detailed analysis of FinMA and several existing LLMs, uncovering their strengths and weaknesses in handling critical financial tasks. The model, datasets, benchmark, and experimental results are open-sourced to facilitate future research in financial AI.Comment: 12 pages, 1 figure

    PLATFORM HEIGHT FOR DROP JUMP DETERMINED BY COUNTER MOVEMENT JUMP

    Get PDF
    The purpose of the study was to apply personal counter movement jump (CMJ) ability as a standard of choosing the height of the platform and to analyze the kinematics and kinetics during DJ in order to find the appropriate height of the platform for an individual. Twenty male Division I college volleyball players were the participants. Data were collected using 11 infrared Eagle cameras and two AMTI force platforms. The major finding was that the personalized platform height designed according to personal jumping ability showed significant increase in the impulse of eccentric phase during the drop height being above 100%CMJ. The platform height chosen according to 100%CMJ would be an appropriate height for an individual
    corecore